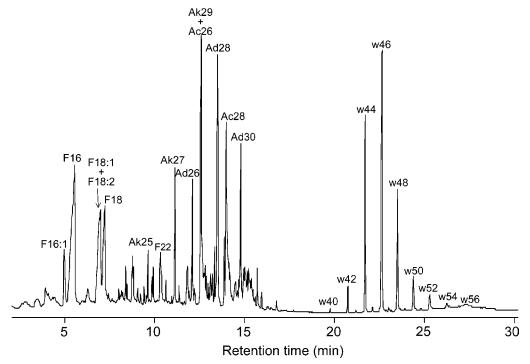
## CORRECTION

Lipids from Flax Fibers and Their Fate in Alkaline Pulping, by Ana Gutiérrez\* and José C. del Río. J. Agric. Food Chem. **2003**, *51*, 4965.

We regret that due to an unfortunate error during the writing of the paper, the chain lengths of the waxes identified were incorrectly assigned in the text. The error arises from Figure 3, which shows the mass spectra of, supposedly, waxes  $C_{50}$ , C<sub>52</sub>, and C<sub>54</sub>, but that in fact corresponds to waxes C<sub>44</sub>, C<sub>46</sub>, and C<sub>48</sub>, as can be clearly deduced from the molecular ions at m/z 648, 676, and 704, respectively. The amended **Figure 3** is shown here. Therefore, throughout the paper, the chain lengths of the waxes have been misidentified (with six carbon atoms more than really corresponds).

In the paper it is said that waxes were identified in flax fibers (and in flax pulps) in the range from  $C_{46}$  to  $C_{60}$ , with the  $C_{50}$ ,  $C_{52}$ , and  $C_{54}$  analogues being the most abundant; in fact, it must state that they were identified in the range from C<sub>40</sub> to C<sub>54</sub>, with the C<sub>44</sub>, C<sub>46</sub>, and C<sub>48</sub> analogues being the most abundant, as is shown in the amended Figures 1 and 4 and Tables 1 and 2. The error affects only the chain length of the esterified fatty alcohol moiety, which is six carbon atoms shorter than that shown in the paper, and the distribution of which, from C<sub>16</sub> to C<sub>32</sub> and maximum at C<sub>28</sub>, now parallels that of the free fatty alcohol series, as shown in the amended Figure 2.


Table 1. Amended Composition of Lipids (mg/100 g) from Flax (L. usitatissimum) Fibers and Their Alkaline Pulps (Only the Compositions of Waxes Have Been Corrected)

|                     | flax pulps |          |         |                     |      |          | flax pulps |  |  |  |  |  |  |
|---------------------|------------|----------|---------|---------------------|------|----------|------------|--|--|--|--|--|--|
| compound            | flax       | kappa 28 | kappa 6 | compound            | flax | kappa 28 | kappa 6    |  |  |  |  |  |  |
| waxes               |            |          |         |                     |      |          |            |  |  |  |  |  |  |
| total               | 168        | 213      | 11.4    | wax C <sub>47</sub> | 0.91 | 0.00     | 0.00       |  |  |  |  |  |  |
| wax C <sub>40</sub> | 0.70       | 0.55     | 0.16    | wax C <sub>48</sub> | 30.0 | 23.9     | 1.04       |  |  |  |  |  |  |
| wax C <sub>42</sub> | 4.86       | 8.51     | 0.80    | wax C <sub>50</sub> | 8.16 | 1.85     | 0.39       |  |  |  |  |  |  |
| wax C <sub>44</sub> | 39.3       | 67.6     | 4.37    | wax C <sub>52</sub> | 3.71 | 0.73     | 0.00       |  |  |  |  |  |  |
| wax C <sub>45</sub> | 0.82       | 0.55     | 0.00    | wax C54             | 1.28 | 0.00     | 0.00       |  |  |  |  |  |  |
| wax C <sub>46</sub> | 78.1       | 109.1    | 4.63    |                     |      |          |            |  |  |  |  |  |  |

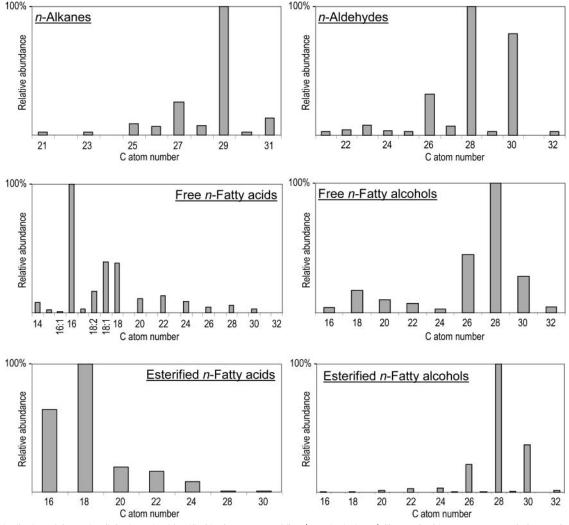

Although the error affects all figures and tables, the rest of the data and conclusions are correct. The amended figures and tables are shown here.

Table 2. Amended Composition of the Different Waxes (mg/100 g) Identified in Flax (L. usitatissimum) Fibers and Their Alkaline Pulps

| waxes fatty acid:                |      | flax pulp |         | waxes fatty acid:                |      | flax pulp |         |
|----------------------------------|------|-----------|---------|----------------------------------|------|-----------|---------|
| fatty alcohol                    | flax | kappa 28  | kappa 6 | fatty alcohol                    | flax | kappa 28  | kappa 6 |
| wax C <sub>40</sub>              | 0.70 | 0.55      | 0.16    | wax C <sub>47</sub>              | 0.91 | 0.00      | 0.00    |
| C <sub>16</sub> :C <sub>24</sub> | 0.26 | 0.26      | 0.12    | C <sub>16</sub> :C <sub>31</sub> | 0.12 | 0.00      | 0.00    |
| C <sub>18</sub> :C <sub>22</sub> | 0.07 | 0.04      | 0.04    | C <sub>18</sub> :C <sub>29</sub> | 0.48 | 0.00      | 0.00    |
| $C_{20}:C_{20}$                  | 0.24 | 0.18      | 0.00    | $C_{20}:C_{27}$                  | 0.16 | 0.00      | 0.00    |
| C <sub>22</sub> :C <sub>18</sub> | 0.13 | 0.07      | 0.00    | $C_{22}:C_{25}$                  | 0.14 | 0.00      | 0.00    |
| wax C <sub>42</sub>              | 4.86 | 8.51      | 0.80    | wax C <sub>48</sub>              | 30.0 | 23.9      | 1.04    |
| $C_{16}:C_{26}$                  | 3.37 | 7.18      | 0.72    | $C_{16}:C_{32}$                  | 0.63 | 1.24      | 0.00    |
| $C_{18}:C_{24}$                  | 0.34 | 0.69      | 0.08    | $C_{18}:C_{30}$                  | 16.6 | 15.0      | 0.48    |
| $C_{20}:C_{22}$                  | 0.42 | 0.17      | 0.00    | $C_{20}:C_{28}$                  | 7.13 | 5.03      | 0.28    |
| $C_{22}:C_{20}$                  | 0.59 | 0.44      | 0.00    | $C_{22}:C_{26}$                  | 4.59 | 2.40      | 0.28    |
| $C_{24}:C_{18}$                  | 0.13 | 0.03      | 0.00    | $C_{24}:C_{24}$                  | 0.58 | 0.15      | 0.00    |
| $C_{26}:C_{16}$                  | 0.02 | 0.01      | 0.00    | $C_{26}:C_{22}$                  | 0.16 | 0.04      | 0.00    |
|                                  |      |           |         | $C_{28}:C_{20}$                  | 0.17 | 0.04      | 0.00    |
| wax C <sub>44</sub>              | 39.3 | 67.6      | 4.37    | $C_{30}:C_{18}$                  | 0.08 | 0.01      | 0.00    |
| C <sub>16</sub> :C <sub>28</sub> | 30.1 | 54.1      | 3.23    |                                  |      |           |         |
| $C_{18}:C_{26}$                  | 6.82 | 12.4      | 1.04    | wax C <sub>50</sub>              | 8.16 | 1.85      | 0.39    |
| $C_{20}:C_{24}$                  | 0.67 | 0.44      | 0.04    | $C_{18}:C_{32}$                  | 0.41 | 0.29      | 0.00    |
| $C_{22}:C_{22}$                  | 1.14 | 0.40      | 0.04    | $C_{20}:C_{30}$                  | 1.85 | 0.44      | 0.02    |
| $C_{24}:C_{20}$                  | 0.35 | 0.07      | 0.00    | $C_{22}:C_{28}$                  | 4.12 | 0.95      | 0.37    |
| C <sub>26</sub> :C <sub>18</sub> | 0.03 | 0.06      | 0.00    | $C_{24}:C_{26}$                  | 1.54 | 0.11      | 0.00    |
| C <sub>28</sub> :C <sub>16</sub> | 0.06 | 0.04      | 0.00    | $C_{26}:C_{24}$                  | 0.07 | 0.07      | 0.00    |
| C <sub>30</sub> :C <sub>14</sub> | 0.07 | 0.07      | 0.00    | $C_{28}:C_{22}$                  | 0.11 | 0.00      | 0.00    |
|                                  |      |           |         | $C_{30}:C_{20}$                  | 0.05 | 0.00      | 0.00    |
| wax C <sub>45</sub>              | 0.82 | 0.55      | 0.00    |                                  |      |           |         |
| $C_{16}:C_{29}$                  | 0.32 | 0.22      | 0.00    | wax C <sub>52</sub>              | 3.71 | 0.73      | 0.00    |
| C <sub>18</sub> :C <sub>27</sub> | 0.33 | 0.33      | 0.00    | $C_{20}:C_{32}$                  | 0.20 | 0.00      | 0.00    |
| $C_{20}:C_{25}$                  | 0.05 | 0.00      | 0.00    | $C_{22}:C_{30}$                  | 1.02 | 0.26      | 0.00    |
| $C_{22}:C_{23}$                  | 0.10 | 0.00      | 0.00    | $C_{24}:C_{28}$                  | 2.05 | 0.47      | 0.00    |
| $C_{24}:C_{21}$                  | 0.03 | 0.00      | 0.00    | $C_{26}:C_{26}$                  | 0.34 | 0.00      | 0.00    |
|                                  |      |           |         | C <sub>28</sub> :C <sub>24</sub> | 0.04 | 0.00      | 0.00    |
| wax C <sub>46</sub>              | 78.1 | 109       | 4.63    | $C_{30}:C_{22}$                  | 0.05 | 0.00      | 0.00    |
| C <sub>16</sub> :C <sub>30</sub> | 15.8 | 18.0      | 0.88    |                                  |      |           |         |
| C <sub>18</sub> :C <sub>28</sub> | 55.1 | 85.4      | 3.39    | wax C54                          | 1.28 | 0.00      | 0.00    |
| C <sub>20</sub> :C <sub>26</sub> | 4.69 | 4.34      | 0.24    | C22:C32                          | 0.16 | 0.00      | 0.00    |
| C <sub>22</sub> :C <sub>24</sub> | 1.17 | 0.80      | 0.12    | C <sub>24</sub> :C <sub>30</sub> | 1.11 | 0.00      | 0.00    |
| C <sub>24</sub> :C <sub>22</sub> | 0.96 | 0.18      | 0.00    |                                  |      |           |         |
| C <sub>26</sub> :C <sub>20</sub> | 0.08 | 0.07      | 0.00    |                                  |      |           |         |
| C <sub>28</sub> :C <sub>18</sub> | 0.15 | 0.07      | 0.00    |                                  |      |           |         |
| C <sub>30</sub> :C <sub>16</sub> | 0.16 | 0.22      | 0.00    |                                  |      |           |         |
|                                  |      |           |         |                                  |      |           |         |



**Figure 1.** GC-MS chromatogram of the underivatized lipid extracts from flax (*Linum usitatissimum*) fibers. F(*n*), *n*-fatty acid series; Ak(*n*), *n*-alkane series; Ad(*n*), *n*-aldehyde series; Ac(*n*), *n*-alcohol series; w(*n*): wax series; *n* denotes the total carbon atom number. (The wax lengths have now been corrected.)



**Figure 2.** Distribution of the main aliphatic series identified in the extracts of flax (*L. usitatissimum*) fibers. The histograms are scaled up to the abundance of the major peak in the series. (The lengths of the esterified fatty alcohol series have now been corrected.)

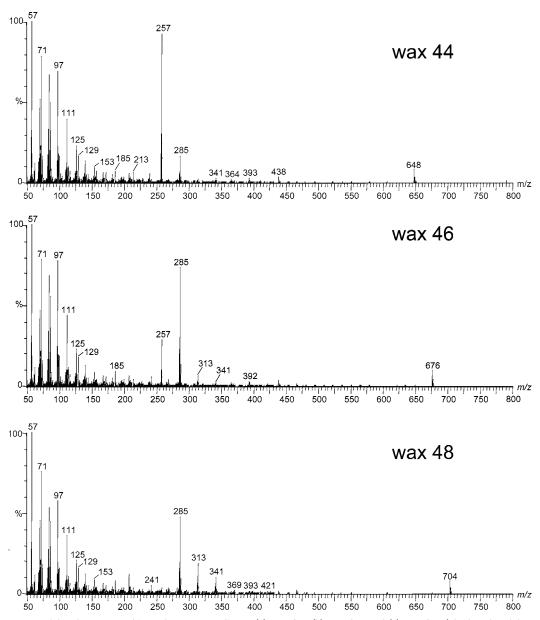



Figure 3. Mass spectra of the chromatographic peaks corresponding to (a) wax  $C_{44}$ , (b) wax  $C_{46}$ , and (c) wax  $C_{48}$ . (The lengths of the waxes have now been correctly identified.)

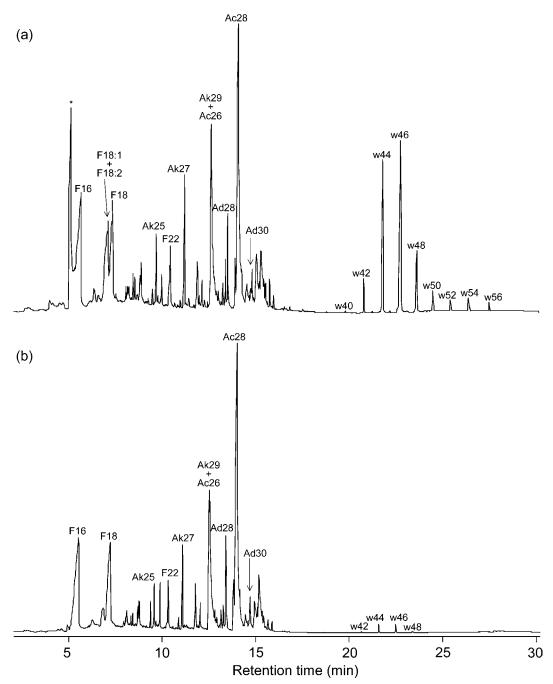



Figure 4. GC-MS chromatograms of the underivatized lipid extracts from (a) flax pulp with kappa number 28 and (b) flax pulp with kappa number 6. F(n), n-fatty acid series; Ak(n), n-alkane series; Ad(n), n-aldehyde series; Ac(n), n-alcohol series; w(n), wax series; n denotes the total carbon atom number. \* is anthraquinone. (The wax lengths have now been corrected.)

JF0306542 10.1021/jf0306542 Published on Web 10/03/2003